博客
关于我
"模式识别与机器学习"读书笔记——1.3 Model Selection
阅读量:798 次
发布时间:2023-04-16

本文共 234 字,大约阅读时间需要 1 分钟。

从多项式匹配中可以初见端倪,若模型复杂度过高会导致过拟合,而若过于简单则匹配效果不佳。因此,选择合适的模型复杂度至关重要。当数据丰富时,可以尝试不同类型的模型,最后选出表现最优的;而在数据相对有限的情况下,则需要采用更为专门化的方法。

在实际应用中,模型的选择往往需要平衡多个因素,既要避免过于复杂导致的过拟合问题,也要确保模型具备足够的表达能力来捕捉数据中的模式。通过合理的模型复杂度选择,可以在保证模型泛化能力的同时,也能充分利用数据特性,从而实现更好的建模效果。

转载地址:http://cugfk.baihongyu.com/

你可能感兴趣的文章
MyEclipse设置当前行背景颜色、选中单词前景色、背景色
查看>>
myeclipse配置springmvc教程
查看>>
MyEclipse配置SVN
查看>>
MTCNN 人脸检测
查看>>
MyEcplise中SpringBoot怎样定制启动banner?
查看>>
MyPython
查看>>
MTD技术介绍
查看>>
MySQL
查看>>
MySQL
查看>>
mysql
查看>>
MTK Android 如何获取系统权限
查看>>
MySQL - 4种基本索引、聚簇索引和非聚索引、索引失效情况、SQL 优化
查看>>
MySQL - ERROR 1406
查看>>
mysql - 视图
查看>>
MySQL - 解读MySQL事务与锁机制
查看>>
MTTR、MTBF、MTTF的大白话理解
查看>>
mt_rand
查看>>
mysql /*! 50100 ... */ 条件编译
查看>>
mudbox卸载/完美解决安装失败/如何彻底卸载清除干净mudbox各种残留注册表和文件的方法...
查看>>
mysql 1264_关于mysql 出现 1264 Out of range value for column 错误的解决办法
查看>>